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For global optimal control strategy, it is not only necessary to know the driving cycle in advance but also difficult to implement online
because of its large calculation volume. As an artificial intelligent-based control strategy, reinforcement learning (RL) is applied to
an energy management strategy of a super-mild hybrid electric vehicle. According to time-speed datasets of sample driving cycles,
a stochastic model of the driver’s power demand is developed. Based on theMarkov decision process theory, a mathematical model
of an RL-based energy management strategy is established, which assumes the minimum cumulative return expectation as its
optimization objective. A policy iteration algorithm is adopted to obtain the optimum control policy that takes the vehicle speed,
driver’s power demand, and state of charge (SOC) as the input and the engine power as the output. Using a MATLAB/Simulink
platform, CYC WVUCITY simulation model is established. The results show that, compared with dynamic programming, this
method can not only adapt to random driving cycles and reduce fuel consumption of 2.4%, but also be implemented online because
of its small calculation volume.

1. Introduction

With the increasing problems of global warming, air pollu-
tion, and energy shortage, hybrid electric vehicles (HEVs)
have been extensively studied because of their potential to
significantly improve fuel economy and reduce emissions.

Energy management strategies are critical for HEVs to
achieve optimal performance and energy efficiency through
power split control. Energy management strategies can be
divided according to the way they are implemented: rule-
based strategies and optimization-based strategies.

Optimization-based strategies form an important group
of energy management strategies and can be divided into
strategies based on instantaneous optimization, global opti-
mization, model predictive control, and artificial intelligent.

Rule-based strategies are primarily based on human
experience. The torque distribution of the engine and motor

is based on preset control rules, which are formulated by the
steady-state MAP chart of the engine and motor. Reference
[1] proposed an energymanagement strategy based on a logic
threshold and a fuzzy algorithm for improving fuel economy.
Wang et al. [2] developed algorithms for On/Off control, load
tracking control, and bus voltage control and conducted a
simulation. Rule-based control strategy is simple and can be
easily implemented online; however, a static control strategy
is not optimal in theory and it also does not consider the
dynamic changes in working conditions.

An instantaneous optimal control strategy can ensure an
optimum objective at every time step; however, it cannot
guarantee an optimum objective design over the whole
driving cycle. Comparedwith the logic threshold strategy, the
calculation amount is large, but it can be implemented online.
Reference [3] formulated the energy management strategy
of an HEV based on driving style recognition. Reference
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Table 1: Super-mild HEV parameters.

Component Parameters Value

Engine
Engine type JL472Q1

Rated power, kW 49±2.45
Maximum torque, N∙m 82±4.1

Motor Rated power, kW 5
Rated speed, r∙min−1 1000

Battery Rated capacity, A∙h 6.5
Rated voltage, V 80

Transmission

Minimum gear ratio 0.498
Maximum gear ratio 4.04

PGT parameter 3.875
Fixed gear ratio 2.4704

Others Final drive gear ratio 4.4059
Motor reducing gear ratio 1.5

[4] combined K-means clustering algorithm with equivalent
consumption minimization strategy to realize the energy
management of the whole vehicle.

An MPC strategy can ensure an objective optimum
design in the prediction domain and can be implemented
online. Reference [5] proposed a stochastic model predictive
control-based energy management strategy using the vehicle
location, traveling direction, and terrain information of the
area for HEVs operating in hilly regions with light traffic.

A global optimal control strategy can guarantee an
objective optimum design over a given driving cycle by
distributing the power of the engine and motor. However,
it can only be implemented offline because of the large
volume of calculations involved. Reference [6] proposed an
improved dynamic programming (DP) control strategy for
hybrid electric buses based on the state transition probability.
DP was applied to an EVT-based HEV powertrain to realize
its optimal control in [7]. A DP algorithm was also used for
global optimization on the performance of a speed coupling
ISG HEV in [8].

Intelligent energy management strategies include fuzzy
logic, neural network, genetic algorithm, and machine
learning-based control strategies. Energy management
strategies based on machine learning include those based on
supervised learning [9, 10], unsupervised learning [11, 12],
and reinforcement learning.

RL is a data-driven approach that assumes the system as
a black box, regardless of whether it is linear or nonlinear.
As a type of self-adaptive optimal control method based on
machine learning, RL has been widely applied to the learning
control of several nonlinear systems.

Reference [13] proposed an energy management strategy
for PHEB based on RL. Liu et al. [14] proposed an RL-
enabled energy management strategy by using the speedy
Q-learning algorithm, to accelerate the convergence rate in
Markov Chain-based control policy computation. Reference
[15] developed an online energy management controller for
a plug-in HEV based on driving condition recognition and a

genetic algorithm. In [16], deep Q learning was adopted for
energy management and the strategy was proposed and veri-
fied. RL was shown to derive model-free and adaptive control
for energy management in [17]. Liu et al. [18] proposed a bi-
level control framework that combined predictive learning
with RL to formulate an energy management strategy.

RL can ensure global optimum over the driving cycle
and does not require foreseeing the driving cycle. Compared
with complex dynamic models, data-driven models can be
implemented online because of the small calculation volume.

Aimed at super-mild HEV, [19] studied rule-based and
instantaneous optimization methods to be applied to energy
management strategies for super-mild HEVs. However, RL
has not been reported to be applied to an energymanagement
strategy of super-mild HEVs.

This study establishes an energy management strategy
for super-mild HEVs based on a known model of RL. The
optimal control results are obtained by a policy iteration algo-
rithm. Based on theMATLAB/Simulink simulation platform,
a simulation is conducted on the economic performance of
the vehicle.

2. Super-Mild Hybrid Electric Vehicle Model

2.1. Structure and Main Parameters. A super-mild HEV is
primarily composed of an engine, motor, and continuously
variable transmission with reflux power. The continuously
variable transmission with reflux power includes a metal belt
continuously variable transmission, a fixed speed ratio gear
transmission device, a planetary gear transmission device,
wet clutches, a one-way clutch, and a brake. Its structure is
shown in Figure 1.Themain parameters are shown in Table 1.

2.2. Working Modes. There are four working modes of
a super-mild HEV: only-motor mode, only-engine mode,
engine-charging mode, and regenerative braking mode, as
shown in Figure 2.
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Figure 1: Super-mild HEV architecture.
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Figure 2: Working modes of super-mild HEV: (a) only-motor. (b) only-engine. (c) Engine-charging. (d) Regenerative braking.

2.3. Vehicle Dynamics Model

2.3.1. Power DemandModel. The power demand at the wheel
is the power sum of rolling resistance, air resistance, and
acceleration resistance:

𝑃re𝑞 = (𝐹𝑓 + 𝐹𝑤 + 𝐹𝑗) V
𝐹𝑓 = 𝑓𝑚𝑔
𝐹𝑤 = 𝐶𝐷𝐴V221.15
𝐹𝑗 = 𝛿𝑚𝑑V𝑑𝑡

(1)

where 𝐹𝑓 is the rolling resistance, 𝐹𝑤 is the air resis-
tance, 𝐹𝑗 is the acceleration resistance, V is the vehicle
speed, 𝑓 is the rolling resistance coefficient, 𝑚 is the
vehicle mass, 𝐶𝐷 is the air resistance coefficient, 𝐴 is the
frontal area, and 𝛿 is the conversion coefficient of rotation
mass.

2.3.2. Engine Model. The engine is a highly nonlinear system
and its working process is very complex. Therefore, engine
data for a steady-state condition are obtained through exper-
iment testing. Based on these data, an engine torque model
and an effective fuel consumption model are established, as
shown in Figures 3 and 4, respectively.

2.3.3. BatteryModel. Based on aNi-MHbattery performance
experiment, the electromotive force and internal resistance
model are obtained as shown in Formulas (2) and (3):

𝐸𝑠𝑜𝑐 = 𝐸0 + 5∑
1

𝐸𝑖SOC𝑖 (2)

where 𝐸0 is the electromotive constant of the battery, 𝐸𝑖 is the
fitting coefficients, SOC is the state of charge, and 𝐸soc is the
electromotive force under the current state:

𝑅𝑠𝑜𝑐 = 𝛿0(𝑅0 + 6∑
1

𝜆𝑖SOC𝑖) (3)
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Figure 3: Engine torque model.
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Figure 4: Engine fuel consumption rate model.

where 𝑅0 is the internal resistance constant of battery, 𝜆𝑖 is
the fitting coefficient, 𝛿0 is the compensation coefficient of
internal resistance with the change in current, SOC is state of
charge, and 𝑅soc is internal resistance under the current state.

The process to calculate the change in SOC is shown by
Formulas (4) ∼ (6):

Δ𝑆𝑂𝐶 = −𝐼𝑏𝑎𝑡 (𝑡)𝑄𝑏𝑎𝑡 (4)

𝐼𝑏𝑎𝑡 (𝑡) = 𝐸𝑠𝑜𝑐 − √𝐸𝑠𝑜𝑐2 − 4𝑃𝑏𝑎𝑡𝑅𝑠𝑜𝑐2𝑅𝑠𝑜𝑐 (5)

Therefore,

Δ𝑆𝑂𝐶 = −𝐸𝑠𝑜𝑐 − √𝐸𝑠𝑜𝑐2 − 4𝑃𝑏𝑎𝑡𝑅𝑠𝑜𝑐2𝑅𝑠𝑜𝑐𝑄𝑏𝑎𝑡 (6)

where 𝑃bat is the battery power, 𝐼bat is the battery current, and𝑄bat is the battery capacity.

3. Stochastic Modeling of Driver’s
Power Demand

Traditionally, the driver’s power demand is obtained accord-
ing to a given driving cycle; however, in reality, the driving
cycle is random. The discrete-time stochastic process is
regarded as Markov decision process (MDP). In other words,
the transition probability from the current state to the next
state only depends on the current state and the selected
action; this is independent of historical states. The power
demand at next state only depends on the current power
demand, which is independent of any previous state. To
establish the transition probability of power demand, a large
volume of data is required. In this study, time-speed datasets
of the UDDS and ECE EUDC driving cycles are adopted to
calculate the power demand at each moment (Figure 5). The
transition probability matrix of the driver’s power demand is
obtained using the maximum likelihood estimation method.

The steps to calculate the power demand, based on the
driving cycle, are as follows:

𝑃𝑟𝑒𝑞 ∈ {𝑃1𝑟𝑒𝑞, 𝑃2𝑟𝑒𝑞, ⋅ ⋅ ⋅ , 𝑃𝑠𝑟𝑒𝑞} (7)
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Figure 5: ECE EUDC and UDDS driving cycles.

The transition probability 𝑃𝑖𝑗 is the probability from the
current state 𝑃𝑖req to the next state 𝑃𝑗req:
𝑃𝑖𝑗 = 𝑃 {𝑃𝑟𝑒𝑞 (𝑘 + 1) = 𝑃𝑗𝑟𝑒𝑞 | 𝑃𝑟𝑒𝑞 (𝑘) = 𝑃𝑖𝑟𝑒𝑞}

𝑖, 𝑗 = 1, 2 ⋅ ⋅ ⋅ , 𝑠, and 𝑠∑
𝑗=1

𝑃𝑖𝑗 = 1 (8)

According to the maximum likelihood estimation
method, the power transition probability can be obtained by

𝑃𝑖𝑗 = 𝑚𝑖𝑗𝑚𝑖 𝑖, 𝑗 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑠} (9)

where 𝑚𝑖𝑗 represents the number of times that the transition
from𝑃𝑖req to𝑃𝑗req has occured given the vehicle speed and𝑚𝑖
represents the total number of times that 𝑃𝑖req has occurred
at the vehicle speed; it is given by

𝑚𝑖 = 𝑠∑
𝑗=1

𝑚𝑖𝑗 (10)

Based on the data of ECE EUDC and UDDS driving
cycles, transition probability matrices for the power demand
are obtained at given speeds of 10 km/h, 20 km/h, 30 km/h,
40 km/h, as shown in Figure 6.

4. Known-Model RL Energy
Management Strategy

4.1. Addressing Energy Management by RL. From a macro-
scopic perspective, the energy management strategy of
an HEV involves determining the driver's power demand
according to the driver's operation (acceleration pedal or
braking pedal) and distributing optimal power split between
two power sources (engine and motor) on the premise of

guaranteeing dynamic performance. Fromamicroscopic per-
spective, the energy management strategy can be abstracted
as solving a sequential optimization decision problem. RL is a
machine learningmethod based onMarkov decision process,
which can solve sequential optimization decision problems.

The process of solving sequential decision problem by RL
is as follows. First, a Markov decision process is represented
by the tuple (𝑠, 𝑎, 𝑃, 𝑟, 𝛾), where 𝑠 is the state set, 𝑎 is the action
set, 𝑃 is the transition probability, 𝑟 is the return function,
and 𝛾 is the discount factor (Figure 7). Second, based on the
Markov decision process, the vehicle controller of an HEV is
regarded as an agent, the distribution of its engine power is
regarded as action 𝑎, and the hybrid electric system except
for the vehicle controller is regarded as the environment. In
order to achieve minimum cumulative fuel consumption, the
agent takes certain action to interact with the environment.
After the environment accepts the action, the state begins
to change and an immediate return is generated to feedback
to the agent. The agent chooses the next action based on
an immediate return and the current state of environment
and, then, interacts with the environment again. The agent
interacts with the environment continually, thus generating a
considerable amount of data. RL utilizes the generated data
to modify the action variable. Then, the agent interacts with
the environment again and generates new data; this new
data is utilized to further optimize the action variable. After
several iterations, the agent will learn the optimal action that
can complete the corresponding task; in other words, it will
determine the decision sequence 𝜋∗0 󳨀→ 𝜋∗1 󳨀→ ⋅ ⋅ ⋅ 𝜋∗𝑡
(Figure 8), thereby solving the sequential decision problem.

4.2. Mathematical Model of an Energy Management Strategy
Based on RL. Mathematical models of the action variable𝑎, state variable 𝑠, and immediate return 𝑟 are established
according to RL theory.The SOC, vehicle speed V, and power
demand 𝑃req are taken as state variables; the engine power𝑃𝑒 is taken as the action variable, and the sum of equivalent
fuel consumption of a one-step state transition and the SOC



www.manaraa.com

6 Journal of Control Science and Engineering

−4 −2 0 2 4 6 8 10

−7
−5

−3
−1

1
3

5
7

0

20

40

60

80

100

Tr
an

sit
io

n 
pr

ob
ab

ili
ty

０
ＣＤ

Current demand power P i
Ｌ？Ｋ (kW) Next demand power P

j
Ｌ？Ｋ

(kW)

(a) v=10km/h

4
9

14

−14
−9

−4
1

6
11

0
20

40

60
80

100

−11
−6

−1

Tr
an

sit
io

n 
pr

ob
ab

ili
ty

０
ＣＤ

Current demand power P i
Ｌ？Ｋ (kW) Next demand power P

j
Ｌ？Ｋ

(kW)

(b) v=20km/h

4 6 8
10 12

−4
−2 0

2
4

6
8

10
12

0

20

40

60

80

100

Tr
an

sit
io

n 
pr

ob
ab

ili
ty

０
ＣＤ

Current demand power P i
Ｌ？Ｋ (kW)

Next demand power P
j
Ｌ？Ｋ

(kW)

(c) v=30km/h

−13 −9
−5

−1
3 7

11 15
−10

−6
−2

2
6

10

0

50

100

Tr
an

sit
io

n 
pr

ob
ab

ili
ty

０
ＣＤ

Current demand power P i
Ｌ？Ｋ (kW)

Next demand power P
j
Ｌ？Ｋ

(kW)

(d) v=40km/h

Figure 6: Power demand transition probability matrix.
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PI Algorithm
1. Input: state transition probability 𝑃𝑖𝑗, return function 𝑟, discount factor 𝛾.
Initialization value function: V(s)=0
Initialization policy 𝜋0

2. Repeat k=0,1. . ..
3. find 𝑉𝜋𝑘 policy evaluation
4. 𝜋𝑘+1 (𝑠) = arg min

a
𝑞𝜋𝑘 (𝑠, 𝑎)policy improvement

5. Until 𝜋𝑘+1 = 𝜋𝑘
6. Output: 𝜋∗ = 𝜋𝑘

Algorithm 1: Flowchart of the PI algorithm.

penalty is taken as the immediate return 𝑟. 𝜆󸀠 is a factor of the
equivalent fuel consumption, 𝑚fuel is the fuel consumption,𝑚ele is the electricity consumption, 𝛼 is the penalty factor of
the battery, and 𝑆𝑂𝐶ref is reference value of the SOC:

𝑠 = [𝑆𝑂𝐶, V, 𝑃𝑟𝑒𝑞]
𝑎 = 𝑃𝑒
𝑟 = 𝑚𝑓𝑢𝑒𝑙 + 𝜆󸀠𝑚𝑒𝑙𝑒 + 𝛼 (𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓)2

(11)

In an infinite time domain, the Markov decision process
will solve the problem of determining a sequence of decision
policies that can predict the minimum cumulative return
expectation of a randomprocess called the optimal state value
function 𝑉∗(𝑠):

𝑉∗ (𝑠) = min
𝜋

𝐸[∞∑
𝑡=0

𝛾𝑡𝑟𝑡+1] (12)

where 𝛾 ∈ [0, 1] is the discount factor, 𝑟𝑡+1 represents the
return value at 𝑡 + 1 time, and 𝜋 represents the control policy.

Meanwhile, the control and state variablesmust alsomeet
the following constraints:

𝑆𝑂𝐶min ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶max

Vmin ≤ V ≤ Vmax

𝑃𝑒min ≤ 𝑃𝑒 ≤ 𝑃𝑒max

𝑃𝑚min ≤ 𝑃𝑚 ≤ 𝑃𝑚max

(13)

where the subscript min and max represent the maximum
and minimum threshold values for the state of charge, speed,
and power, respectively.

4.3. Policy Iterative Algorithm. For Formula (12), according to
the Berman equation

𝑉∗ (𝑠) = min∑
𝑎

𝜋 (𝑠, 𝑎)∑
𝑠󸀠

𝑃 (𝑠, 𝑎, 𝑠󸀠)
⋅ (𝑟 (𝑠, 𝑎, 𝑠󸀠) + 𝛾𝑉∗ (𝑠󸀠))

(14)

where s󸀠 represents the state at the next time step.

Table 2: Simulation results based on ECE EUDC.

Control Policy Fuel Consumption (L/100 km)
Rule-based 5.368
Instantaneous optimization 5.256
DP 4.952
RL 5.069

The purpose of the solution is to determine the optimal
policy 𝜋∗:

𝜋∗ (𝑠) = argmin ∑
𝑎

𝜋 (𝑠, 𝑎)∑
𝑠󸀠

𝑃 (𝑠, 𝑎, 𝑠󸀠)
⋅ (𝑟 (𝑠, 𝑎, 𝑠󸀠) + 𝛾𝑉∗ (𝑠󸀠))

(15)

A policy iterative (PI) algorithm is used to solve the prob-
lemof the randomprocess. It involves a policy estimation step
and a policy improvement-step.

The calculation process is shown in Algorithm 1.
In the policy evaluation step, for a control policy 𝜋k(s)

(the subscript k represents the number of iterations), the
corresponding state value function 𝑉𝜋𝑘(s) is calculated, as
shown in

𝑉𝜋𝑘 (𝑠)
= ∑
𝑎

𝜋𝑘 (𝑠, 𝑎)∑
𝑠󸀠

𝑃 (𝑠, 𝑎, 𝑠󸀠) (𝑟 (𝑠, 𝑎, 𝑠󸀠) + 𝛾𝑉𝜋𝑘 (𝑠󸀠)) (16)

In the policy improvement step, the improved policy𝜋𝑘+1(s) is determined through a greedy strategy, as shown in

𝜋𝑘+1 (𝑠) = argmin
𝑎

𝑞𝜋𝑘 (𝑠, 𝑎)
𝑞𝜋𝑘 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾∑𝑃(𝑠, 𝑎, 𝑠󸀠)𝑉𝜋𝑘 (𝑠󸀠) (17)

During policy iteration, policy evaluation and policy
improvement are performed alternately until the state value
function and the policy converge.

The policy iteration algorithm is adopted, obtaining the
optimum control policy that takes the vehicle speed, driver’s
power demand, and SOC as the input and the engine power
as the output. Figure 9 shows the optimized engine powers at
vehicle speeds of 10 km/h, 20 km/h, 30 km/h, and 40 km/h.
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Figure 9: Optimization charts of engine power.
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Figure 10: Implementation frame of the energy management strategy.

It can be seen from Figure 9 that only the motor works
when the SOC is high and the power demand is low; when
both the SOC and the power demand are high, only the
engine works, and, when the SOC is low, the engine is in the
charging mode.

Figure 10 illustrates the offline and online implemen-
tation frames of the energy management strategy. In the
offline part, the power demand transition probability matrix
is obtained by the Markov Chain. Mathematical models

of the state variable 𝑠, action variable 𝑎, and immediate
return 𝑟 are derived according to RL theory. The policy
iteration algorithm is employed to determine engine power
optimization tables. In the online part, the driver's power
demand is obtained by the opening of driver's accelerator
pedal and brake pedal. Then, the power of the engine and
motor is distributed by looking up the offline engine power
optimization tables. Finally, the power is transferred to the
wheels by the transmission system.
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Figure 11: ECE EUDC simulation results based on RL.

5. Simulation Experiment and Results

A simulation is conducted on a MATLAB/ Simulink plat-
form, taking ECE EUDC driving cycle as the simulation
driving cycle and setting the initial SOC as 0.6. The energy
management strategy based on a known model of RL is
adopted, simulating the vehicle operation status online.
Results are shown in Figure 11.

From Figure 11, we can see that the following parameters
change with time: gear ratio of transmission 𝑖g, SOC of
the battery, power demand 𝑃req, motor power 𝑃m, engine
torque 𝑇e, motor torque 𝑇𝑚, and instantaneous equivalent
fuel consumption 𝑏equ. From Figure 11(b), it can be seen that

the gear ratio varies continuously from 0.498 to 4.04; this
is primarily because of the use of a CVT with reflux power,
which, unlike AMT, can realize power without interruption.
In Figure 11(c), SOC of the battery is seen to change from the
initial value of 0.6 to the final value of 0.5845;�SOC = 0.0155;
this can meet the HEV SOC balance requirement before and
after the cycle (−0.02 ≤ Δ𝑆𝑂𝐶 ≤ 0.02). The power demand
change curve of the vehicle is obtained based on ECE EUDC,
as shown in Figure 11(d).The power distribution curves of the
motor and the engine can be obtained according to the engine
power optimization control tables, as shown in Figures 11(e)
and 11(f). The motor power is negative, which indicates that
the motor is in the generating state.
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Figure 12: Comparison between DP and RL optimization results based on ECE EUDC.
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Figure 13: Comparison between DP and RL optimization results based on CYC WVUCITY.
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Table 3: Simulation results based on CYC WVUCITY.

Control Policy Fuel Consumption (L/100 km) Computation time(s)a

offline online
DP 4.983 5280 —
RL 4.864 4300 35
aA 2.5GHz microprocessor with 8GB RAM was used.

In order to validate the optimal performance of the RL
control strategy, vehicle simulation tests based on DP and
RL were carried out. Figure 12 shows a comparison of the
optimization results by the two control methods based on
the ECE EUDC driving cycle. The solid line indicates the
optimization results of RL and the dotted line indicates
the results of DP. Figure 12(a) shows the SOC optimization
trajectories of the DP- and RL-based strategies. The trend of
the two curves is essentially the same.The difference between
the final SOC and the initial SOC is within 0.02, and the SOC
is relatively stable. Compared with RL, the SOC curve of DP-
based strategy fluctuates greatly; this is primarily related to
the distribution of the power source torque. Figures 12(b) and
12(c) indicate engine and motor torque distribution curves
based on DP and RL strategies. The engine torque curves
essentially coincide; however, the motor torque curves are
somewhat different. This is primarily reflected in the torque
distribution when the motor is in the generation state.

Table 2 shows the equivalent fuel consumption obtained
through DP and RL optimization. Compared with that
obtained by DP (4.952L), the value of fuel consumption
obtained by RL is 2.3% higher. The reason for this is that
DP only ensures a global optimum at a given driving cycle
(ECE EUDC), whereas RL optimizes the result for a series of
driving cycles in an average sense, thereby realizing a cumu-
lative expected value optimum. Compared with rule-based
(5.368L) and instantaneous optimization (5.256L) proposed
in the literature [19], RL decreased the fuel consumption by
5.6% and 3.6%, respectively.

In order to validate the adaptability of RL to random
driving cycle, CYC WVUCITY is also selected as a simula-
tion cycle. The optimization results are shown in Figure 13.
Figure 13(b) shows the variation curve of the SOC of the
battery based on DP and RL control strategies. The solid
line indicates the optimization results of RL and the dotted
line indicates the results of DP. The final SOC value for the
DP and RL strategies is 0.59 and 0.58, respectively, with the
same initial value of 0.6.The SOC remained essentially stable.
Figures 13(c) and 13(d) show the optimal torque curves of
the motor and the engine based on DP and RL strategies. It
can be seen from the figure that the changing trend of the
torque curves based on the two strategies is largely the same.
In comparison, the change in the torque obtained by DP
fluctuates greatly. Table 3 demonstrates the equivalent fuel
consumption of the two control strategies. Compared with
DP, RL saves fuel by 2.4%; it can adapt with random cycle
perfectly. Meanwhile, the computation time based onDP and
RL is recorded, which include offline and online computation
time. The offline computation time of DP is 5280s and that
of RL is 4300s. Due to large calculation volume and the

driving cycle unknown in advance, DP cannot be realized
online, while RL is not limited to a certain cycle, which can be
realized online by embedding the engine power optimization
tables into the vehicle controller. The online operation time
of RL is 35s based on CYC WVUCITY simulation cycle.

6. Conclusion

(1) We established a stochastic Markov model of the
driver’s power demand based on datasets of the UDDS and
ECE EUDC driving cycles.(2) An RL energy management strategy was proposed
which takes SOC, vehicle speed, and power demand as state
variables, engine power as power as the action variable, and
minimum cumulative return expectation as the optimization
objective.(3) Using the MATLAB/Simulink platform, a CYC
WVUCITY simulation model was established. The results
show that, comparedwithDP, RL could reduce fuel consump-
tion by 2.4% and be implemented online.
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